Optimal Design for Prediction in Random Field Models via Covariance Kernel Expansions
نویسندگان
چکیده
We consider experimental design for the prediction of a realization of a second-order random field Z with known covariance function, or kernel, K. When the mean of Z is known, the integrated mean squared error of the best linear predictor, approximated by spectral truncation, coincides with that obtained with a Bayesian linear model. The machinery of approximate design theory is then available to determine optimal design measures, from which exact designs (collections of sites where to observe Z) can be extracted. The situation is more complex in the presence of an unknown linear parametric trend, and we show how a Bayesian linear model especially adapted to the trend can be obtained via a suitable projection of Z which yields a reduction of K.
منابع مشابه
Spectral approximation of the IMSE criterion for optimal designs in kernel-based interpolation models
We address the problem of computing IMSE-optimal designs for random field interpolation models. A spectral representation of the IMSE criterion is obtained from the eigendecomposition of the integral operator defined by the covariance kernel of the random field and integration measure considered. The IMSE can then be approximated by spectral truncation and bounds on the error induced by this tr...
متن کاملOnline learning of positive and negative prototypes with explanations based on kernel expansion
The issue of classification is still a topic of discussion in many current articles. Most of the models presented in the articles suffer from a lack of explanation for a reason comprehensible to humans. One way to create explainability is to separate the weights of the network into positive and negative parts based on the prototype. The positive part represents the weights of the correct class ...
متن کاملBayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models
The phenomenon of genotype × environment (G × E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-...
متن کاملEstimating Spatial Covariance using Penalized Likelihood with Weighted L1 Penalty
In spatial statistics, estimation of large covariance matrices are of great importance because of their role in spatial prediction and design. The traditional approaches typically assume that the spatial process is stationary, the covariance function takes some well known parametric form, and estimates the parameters of the covariance functions using likelihood based methods. In this paper we p...
متن کاملOptimal Design for Linear Models with Correlated Observations1 by Holger Dette,
In the common linear regression model the problem of determining optimal designs for least squares estimation is considered in the case where the observations are correlated. A necessary condition for the optimality of a given design is provided, which extends the classical equivalence theory for optimal designs in models with uncorrelated errors to the case of dependent data. If the regression...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017